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Intelligent Monitoring for 
Improved SLM Quality Control

Selective laser melting entails the fusing of metal powder into an already 
manufactured component. This process can lead to avoidable defective 
layers, making the process cost-intensive and inefficient. Use of an intelligent 
monitoring system to enable automatic detection of defective layers during 
the 3D printing process saves time and resources –  especially given that 
3D printing with integrated quality control hardly requires any manual 
intervention.

Contact
uhrich@informatik.uni-leipzig.de DOI: 10.30844/I4SE.23.1.88

Keywords
intelligent systems, autoencoders, 3D 
printing, machine learning, decision 
support, selective laser melting, SLM, 
Siemens, LAB color model, Contrast 
Limited Adaptive Histogram Equalization, 
CLAHE



90 Industry 4.0 Science 2023, 1

The ORCID identification numbers(s) for the 
author(s) of this article can be found under  
https://doi.org/10.30844/I4SE.23.1.88

This is an open access article under the terms of the 
Creative Commons Attribution License, which permits 
use, distribution and reproduction in any medium, 
provided the original work is properly cited.

Selective laser melting

Selective Laser Melting is used in industry to produce 
metal components and is becoming increasingly 
important in the manufacturing industry. It is an 
additive manufacturing process in which a bed of 
metal powder is applied in even layers to a component 
platform and melted using a laser. This makes it 
possible to produce components with comparatively 
high individual geometric requirements. The process 
involves repeated heating and cooling cycles, during 
which the components are subjected to constant high 
stresses. To ensure a high quality standard, defective 
printed layers should be avoided. Defective layers 
have issues such as pores, cracks or unevenness, which 
lead to quality-reducing properties. The components 
or test components are tested for tensile or 
compressive strength only after printing to ensure the 
quality of the components. If the test results are 
negative, the component is analyzed and printed again 
with optimized process parameters, making the 
process very costly and time-consuming [1].

Methodology

To enable detection 
during the printing 
process itself, two 
methods are used: an 
autoencoder and 
principal component 
analysis. Both methods 
obtain greyscale images 
generated by Siemens, 

which show the  printed layers of the com ponent 
from a bird's eye view.

Pre-processing of the greyscale images

In the field of machine learning, data pre-processing 
is an essential step. Neural networks are only as good 
as the quality of the data they predict. The Siemens 
example dataset contains an image of the entire 
component platform per layer. In this particular print 
job, nine components with different geometric 
dimensions are created at the same time, so they have 
to be separated in the greyscale image.  It is necessary 
to improve the visibility, contrast and brightness of 
the clipped images. The colors of the images are 
converted to the so-called LAB color model, while 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE) improves the brightness channel. All three 
channels are then combined [2].

Artificial neural networks model the functioning of the 
human brain and simulate learning using neurons. 
They are used, for example, in image recognition, where 
they have achieved groundbreaking milestones. A 
summarizing overview of how artificial neural networks 
work and successful applications, especially but not 
exclusively in imaging, is given by Z. Li et al. [3].

Autoencoder 

Autoencoders are neural networks that consist of two 
phases:

An autoencoder reduces the dimension of an input in 
the so-called encoding step and reconstructs the ori-

In selective laser melting, metal powder is melted layer by layer and fused 
with the already manufactured part. Within this process, defective layers 
are created, which can be avoided. Such defects can only be detected by 
various compression and tensile strength experiments after printing is 
complete. This procedure is costly and inefficient. Therefore, a demonstrator 
is presented that uses machine learning methods to identify defective 
layers during the manufacturing process. In addition, the machine operator 
is supported with decision recommendations.
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ginal input in the so-called decoding step, as shown in 
Figure 1.

After the encoding step, a compressed representation 
of the input is available that contains all the informa-
tion to reconstruct the input. The autoencoder learns 
transformation functions in differently dimensioned 
vector spaces.

This is done by training an autoencoder on a set of 
images. The trained autoencoder can reconstruct 
similar images without having seen them before. Early 
stopping is used to determine the number of epochs 
for training. This automatically stops the training of 
the autoencoder when the loss of test data between 
epochs ceases to vary significantly. The loss serves as 
a quality criterion of a model and is calculated from 
a corresponding loss function. Model error is then 
calculated from mean square error. Using early 
stopping also prevents overfitting of the model to the 
training data [4]. The number of epochs depends on 
the design and training of the autoencoder. The idea 
is to use images to train the autoencoder on a non-
defective print. In particular, other images that also 
come from a non-defective print should be able to be 
reconstructed well, while images from faulty print 
layers are less well reconstructed. These deviations 
in the images are measurable and visualized in the 
demonstrator, as shown in Figure 2. During printing, 
the deviation is visible for each layer. If there are a 

Figure 1: Autoencoder that receives the separated components as input, transforms them to a low-dimensional vector 
space in the encoding step and back-transforms them in the decoding step, thus reconstructing the input. Below are 
examples of greyscale images of the individual layers.

certain number of layers with high deviations, printing 
can be stopped because quality degradation can be 
expected.

After data pre-processing and autoencoder training, 
intelligent monitoring of the print job is possible. Irre-
gularities that indicate defective layers are called ano-
malies. Faulty layers indicate a reduction in component 
quality and are avoidable. Using the autoencoder and 
the reconstructed images, anomalies can be detected 
in the printing process.  By training on high quality 
printed layers, the autoencoder cannot reconstruct 
defective layers well, increasing the reconstruction 
error and making anomalies visible. 

Mean square error (MQA) is proposed to calculate the 
reconstruction error:

Reconstructionerror=(originalimage-reconstructedimage)2 (1)

MQA is a standard metric in many machine learning 
applications. In the best case, the reconstruction error 
converges to 0, which indicates high-quality printed 
layers [5, 6].

Principal component analysis

Principal component analysis is a well-known method 
of linear dimension reduction [7]. Calculations are 
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Two clusters are visible, with the points of one cluster 
moving downward due to the pyramidal geometry. 

The topology of the points within the cluster can be 
traced back to the pyramidal geometry. On the right 
hand-side of Figure 2, the reconstruction error of the 
autoencoder is calculated. This allows the progress of 
the printing process to be assessed against a threshold. 
Both monitoring parameters can independently detect 
irregularities that indicate errors in the printing process 
and require manual intervention.

Analysis of the components and results

An empirical threshold can be defined that separates 
the printed layer into defective or non-defective, and 
decisions can be made about how to proceed. 
Anomalies are detected as soon as the reconstruction 
error exceeds the threshold, otherwise it is safe to 
continue printing. 

The user is free to adjust this threshold upwards or 
downwards, for example to update component quality 
standards. The number of outliers gives an indication of 
the component quality. For demonstration purposes, the 
following rules, which result from professional evaluation 
of components and image sequences, can be defined:

The component is considered to be error free if no 
reconstruction error is above the threshold.

The component is considered minimally defective if 
one or two reconstruction errors are above the th-
reshold.

used to determine the so-called principal components 
of the data. These are exactly the characteristics of 
the data that mainly define it. Correlations between 
variables are used to reduce the data set to less 
uncorrelated principal components [8]. In this case, 
the 3D printed images are to be reduced to two 
dimensions (an image has 100 x 100 pixels or 
dimensions in the input). The goal is a 2-dimensional 
representation of the images as points of a cluster in 
the diagram. Defective layers are identified by the 
scattering of these points in the diagram. The distance 
between the scattered points is determined by 
calculating a cluster center. Neighboring layers should 
be very similar, so ideally the image of a layer will 
always be close to the cluster centre.

Decision support application

Both methods are visualised in the demonstrator as 
shown in Figure 2.

The left-hand side of Figure 2 shows the image features. 
These features are projected onto a 2-dimensional 
vector space using the coupling of the autoencoder and 
principal component analysis. The encoding step in the 
autoencoder transforms the images into a 25 x 25 
vector space. Principal component analysis then reduces 
this vector space to a 2D vector space to map the existing 
image features onto the points.  Ideally, this will produce 
two clusters, thus indicating a good print. The origin of 
the two different clusters can be traced back to the 
different exposure requirements due to the position of 
the coater in the press. The printed layers are alternately 
exposed brighter and slightly darker.

Figure 2: Error-free printing of a component. Left: Two-dimensional representation of the images using autoencoder 
and principal component analysis. Right: Representation of the reconstruction error for each layer with an empirically 
determined threshold.
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Component 1: severely defective (13 defective layers)
Component 2: slightly defective (2 defective layers) 
Component 3: slightly defective (1 defective layer) 
Component 4: severely defective (50 defective layers)
Component 5: slightly defective (1 defective layer)
Component 6: slightly defective (1 defective layer)
Component 7: potentially defective (4 defective layers) 
Component 8: faultless (0 defective layers)
Component 9: faultless (0 defective layers)

The component is considered potentially faulty (and 
should be checked manually) if three or four reconst-
ruction faults are above the threshold. 

The component is considered to be severely defective 
if there are at least five reconstruction errors above 
the threshold. 

If the available components are analyzed using this set 
of rules, the following evaluation results:

Figure 3: Warning due to a layer exceeding the reconstruction error threshold. Users have the option of stopping the 
printing process at an early stage or continuing the production process.

Figure 4: The print is automatically aborted because the reconstruction error of five consecutive layers exceeds the 
threshold. Likewise, numerous outliers can be seen in the left diagram, indicating low-quality layers.
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To this end, the development of hybrid models for the 
thermal simulation of melting processes during 3D 
printing is being researched at Leipzig University and 
by Scads.AI [9]. In particular, mapping of physical 
relationships such as ordinary or partial differential 
equations are coupled with classical machine learning 
methods to generate data-driven, interpretable 
predictive models. This results in novel intelligent 
systems [10] [11].

This article was written as part of the project "TWIN-
Transformation of complex product development processes 
into knowledge-based services for generative manufacturing", 
which is funded by the German Federal Ministry of Education 
and Research under the reference number 02K18D050 ff.
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In addition, the authors propose to have the monitoring 
system give a warning for each defective printed layer, 
with the option to stop or continue the printing process. 
Furthermore after five consecutive defective layers, the 
print job stops automatically. Both cases are shown in 
Figure 3 and Figure 4, respectively. For component 1 
the process is stopped after 745 layers and for 
component 4 after 684 printed layers.

Summary and outlook

Automatic detection of faulty layers during the printing 
process using an intelligent monitoring system saves 
time and resources. To achieve this goal, greyscale 
images were generated and pre-processed. The training 
of an autoencoder is based on two high quality 
components. The difference between the original image 
and the reconstructed image is used to identify 
anomalies. If one component has too many outliers, 
the printing process can be stopped early to save 
material. In addition, the image features of each layer 
can be reduced to two dimensions. This allows these 
features to be visualized in the greyscale image, 
providing a graphical representation of the printing 
process. This can be used to identify characteristics 
and similarities between printing processes. For future 
work, it would be interesting to evaluate the approach 
with other components. Other component geometries 
could also be analyzed. For this, it is necessary to train 
the autoencoder with components of varying geometric 
compositions. To apply this approach in practice, it is 
possible to read and process the greyscale images of 
each layer in real time. The speed of printing and the 
performance of the application are important here and 
have not yet been considered in the current work.

It would also be conceivable to train an artificial neural 
network to classify defective or non-defective layers. 
In addition, other classification algorithms such as 
random forest or a support vector machine could be 
used. Due to high resource consumption and post-print 
quality control (printing a part can take anywhere from 
several hours to several days), the standard process 
is comparatively inefficient. Automated early detection 
of defective layers will make 3D printing more profitable 
and sustainable. 3D printing with integrated quality 
control requires minimal manual intervention. Using 
the methods presented, it will be possible in the future 
to intelligently monitor complex industrial systems 
such as 3D printing. Production processes can be 
continuously optimized and the need for human 
supervision of individual machines will be eliminated.  
Intelligent analysis and visualization can be extended 
to heterogeneous sensor data streams from production 
processes. This will make it possible to detect faults 
in different production parameters and processes.  


